Problem Set 6 Ch153a – Winter 2024

Due: 12 February 2024

- 1. (15 points) Consider a binuclear metal complex constructed from two square-planar ML_4 fragments where the L ligands are σ -donors. There are two limiting conformations in the resulting M_2L_8 complex: in one the ligands are eclipsed and in the other they are staggered.
 - a. Draw the two conformations of the binuclear metal complex and assign each to a symmetry point group.
 - b. Construct an MO diagram for each conformation using the following orbitals: five M d orbitals and four L σ orbitals. Assume that M-L σ -bonding is quite strong.
 - c. Assume that ML₄ has a d^4 electron configuration, and that each ligand L contributes two σ electrons.
 - i. Predict the preferred ground-state conformation of the corresponding M_2L_8 complex and give the electronic configuration and term symbol for the ground electronic state. Determine the metal-metal bond order.
 - ii. Identify the spin-allowed electronic transitions involving the *d*-orbitals, determine the term symbols for the excited states, and predict the relative energy ordering of these states.
 - iii. Predict the lowest-energy electric-dipole-allowed transition. Also, predict the polarization of light that will induce the transition.
 - d. Assume that ML_4 has a d^6 electron configuration, and that each ligand L contributes two σ electrons. Predict the preferred ground-state conformation of the corresponding M_2L_8 complex and give the electronic configuration and term symbol for the ground electronic state. Determine the metal-metal bond order.
 - e) Assume that ML₄ has a d^7 electron configuration, and that each ligand L contributes two σ electrons.
 - i. Predict the preferred ground-state conformation of the corresponding M_2L_8 complex and give the electronic configuration and term symbol for the ground electronic state. Determine the metal-metal bond order.
 - ii. Identify the spin-allowed electronic transitions involving the *d*-orbitals, determine the term symbols for the excited states, and predict the relative energy ordering of these states.
 - iii. Predict the lowest-energy electric-dipole-allowed transition that should be M—M axis polarized.

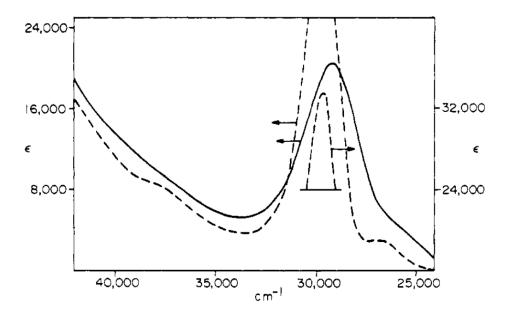


Figure 2. Electronic spectra of $Mn_2(CO)_{10}$ in 3-PIP: —, 300 K; - - -, 77 K.

- 2. (5 points) The absorption spectrum of $Mn_2(CO)_{10}$ (shown above) exhibits an intense absorption band at $30,000 \, \mathrm{cm}^{-1}$, and a lower-energy feature at $27,000 \, \mathrm{cm}^{-1}$. The $30,000 \, \mathrm{cm}^{-1}$ absorption band is polarized parallel to the Mn-Mn axis, and the $27,000 \, \mathrm{cm}^{-1}$ band is polarized perpendicular to this axis. Propose assignments for these bands based on a MO diagram for binuclear d^7 - d^7 complexes.
- 3. (10 points) The room-temperature absorption spectrum of a single crystal of K₄Pt₂(H₂P₂O₅)₄•2H₂O (K₄Pt-POP) is shown to the right. Pt-POP^{4−} also is luminescent, displaying intense green phosphorescence with a maximum near 500 nm.

At cryogenic temperatures, the absorption spectrum of the Ba²⁺ salt of Pt-POP⁴⁻ develops rich vibrational fine structure in the lowest energy absorption band (next page). The vibrational fine structure is associated with an excited-state distortion along the Pt-Pt stretching coordinate. The vibronic peak positions for the lowest energy absorption band are given in the table on the following page.

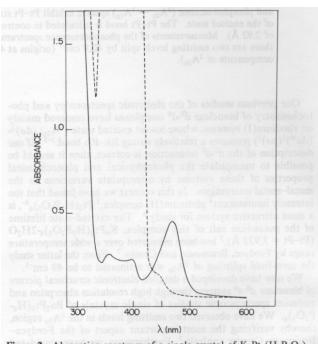
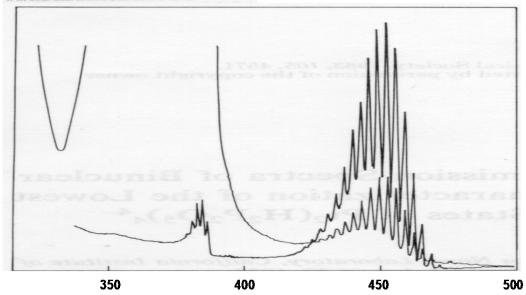
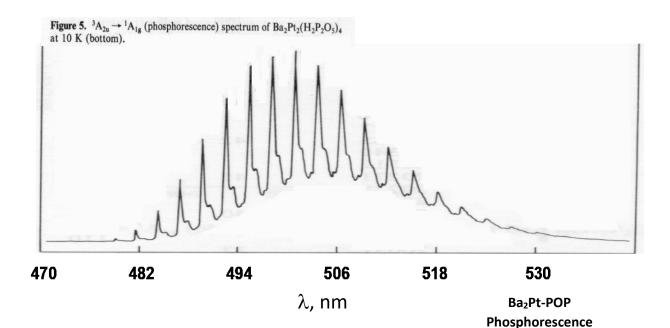



Figure 2. Absorption spectrum of a single crystal of $K_4Pt_2(H_2P_2O_5)_4$ · $2H_2O$ at 300 K. Solid line: electric dipole perpendicular to the crystallographic c axis. Dashed line: parallel to the c axis and the Pt-Pt axis.


Figure 1. Absorption spectrum along two extinction directions of the same face of a single crystal of $Ba_2Pt_2(H_2P_2O_3)_4$ at 5 K. The orientation of the metal–metal direction is not known in this salt.

- λ. nm
- a. What is the vibrational frequency of the distorting mode in the excited state?
- b. What value of the Huang-Rhys parameter (S_{HR}) gives the best fit to the lowest energy absorption band?
- c. If the force constant for the Pt-Pt stretching mode is 1.0 mdyne/Å, what is the magnitude of the distortion along the Pt-Pt coordinate in the excited state?

Ba₂Pt-POP Absorption

v	8, nm
0	476.0
1	472.5
2	469.1
3	465.7
4	462.4
5	459.2
6	456.1
7	452.9
8	449.8
9	446.7
10	443.5
11	440.4
12	437.4
13	434.4
14	431.5
15	428.7
16	425.8
17	423.2
18	420.3
19	417.5

The phosphorescence spectrum of crystalline Ba_2Pt -POP at 10 K also displays rich fine structure in the Pt-Pt vibrational mode (below). The vibronic peak positions for the phosphorescence band are given in the table on the following page.

- d. What is the vibrational frequency of the distorting mode in the ground state?
- e. What value of the Huang-Rhys parameter (S_{HR}) gives the best fit to the phosphorescence band?
- f. On the basis of your fit to the phosphorescence spectrum, what is the magnitude of the distortion along the Pt-Pt coordinate in the excited state? How does this value compare to that extracted from the fit to the absorption spectrum?
- g. The Pt-Pt distance in the ground state of Pt-POP⁴⁻ is 2.92 Å. On the basis of the structured absorption and phosphorescence band profiles, what do you estimate for the Pt-Pt distance in the excited state?

V	8, nm
0	476.5
1	479.0
2	481.6
3	484.2
4	486.8
5	489.5
6	492.3
7	495.1
8	497.8
9	500.6
10	503.3
11	506.1
12	509.1
13	512.0
14	515.0
15	517.9
16	520.9
17	523.9
18	526.9
19	530.1
20	533.3

536.5

21