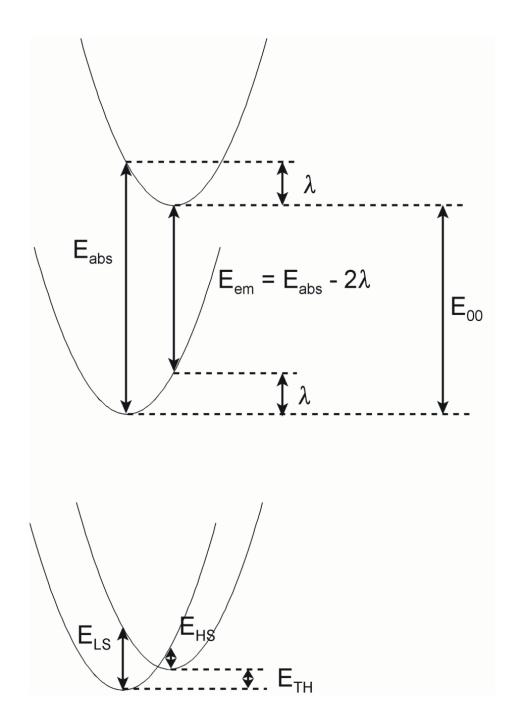

Problem Set 2 Ch153a – Winter 2024 Due: 16 January 2024

1. Spin Crossover in d² and d³ Oxo- and Nitrido Complexes

The $d\pi$ -orbital splitting for a tetragonal oxo- or nitrido-metal complex is shown below.

The value of Δ_{π} is not the same in all of the states of a d^2 or d^3 nitrido or oxo complex. The M=N (or M=O) bond should be longer in a $(xy)^1(xz,yz)^1$ excited state than in the $(xy)^2$ ground state. Consequently, in the relaxed $(xy)^1(xz,yz)^1$ excited state, Δ_{π} will be smaller than it was in the ground state.


The following states and energies arise from the d^2 , and d^3 configurations in this scheme:

d²:

³ A ₂ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A - 5B$
¹ A ₁ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A + 7B + 4C$
¹ B ₁ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A + B + 2C$
¹ B ₂ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A + B + 2C$
¹ E[(xy) ¹ (xz,yz) ¹]	$E = \Delta_{\pi} + A + B + 2C$
³ E[(xy) ¹ (xz,yz) ¹]	$E = \Delta_{\pi} + A - 5B$
¹ A ₁ [(xy) ²]	E = A + 4B + 3C
<i>d</i> ³ :	
² E[(xz,yz) ³]	$E = 3 \Delta_{\pi} + 3 A - 3 B + 4 C$
⁴ B ₁ [(xy) ¹ (xz,yz) ²]	$E=2\Delta_{\pi}+3A-15B$
² B ₁ [(xy) ¹ (xz,yz) ²]	$E = 2\Delta_{\pi} + 3A - 6B + 3C$
² A ₁ [(xy) ¹ (xz,yz) ²]	$E = 2\Delta_{\pi} + 3A - 6B + 3C$
² B ₂ [(xy) ¹ (xz,yz) ²]	$E = 2\Delta_{\pi} + 3A + 5C$
$^{2}A_{2}[(xy)^{1}(xz,yz)^{2}]$	$E = 2\Delta_{\pi} + 3A - 6B + 3C$
² E[(xy) ² (xz,yz) ¹]	$E = \Delta_{\pi} + 3A - 3B + 4C$

You can estimate the change in Δ_{π} from the shape of the absorption band. In $Mn^{V}(N)(CN)_{5}^{3-}$, the parameter λ is about 3,400 cm⁻¹. So, if $E_{abs} = 19,400$ cm⁻¹, then $E_{em} = 12,600$ cm⁻¹. The energy gap between ³E and ¹A₁ is $\Delta_{\pi} - 9B - 3C \approx \Delta_{\pi} - 21B$.

Refer to the graphic below. For thermal population of a high-spin state, the relevant energy is E_{TH} (or E_{00}), which is less than the vertical energy difference: $E_{TH} = E_{abs} - \lambda$.

- a. Find the Δ_{π} values at the high-spin/low-spin crossover points for d^2 and d^3 tetragonal oxo- and nitrido-metal complexes. Assume that B = 500 cm⁻¹ and C/B = 4.
- b. Assume that you have a high-spin/low-spin equilibrium in a d^2 tetragonal oxo- or nitrido-metal complex in which $E_{TH} = 0$. What are the Δ_{π} values for high- and low-spin forms?
- c. Assume that you have a high-spin/low-spin equilibrium in a d^3 tetragonal oxo- and nitrido-metal complex in which $E_{TH} = 0$. What are the Δ_{π} values for high- and low-spin forms?
- d. What are the relative populations of the high- and low-spin states in problems (b) and (c)?
- e. Karl Wieghardt reported (Angew. Chem. Int. Ed. 2005, 44, 2908-2912) that, unexpectedly, the ground-state total spin of the [(cyclam-acetato)Fe^V(N)]⁺ core is S=1/2 and not S=3/2. Discuss whether you think that this result is "unexpected".