
Problem Set 1 Ch153a – Winter 2024 Due: 8 January 2024

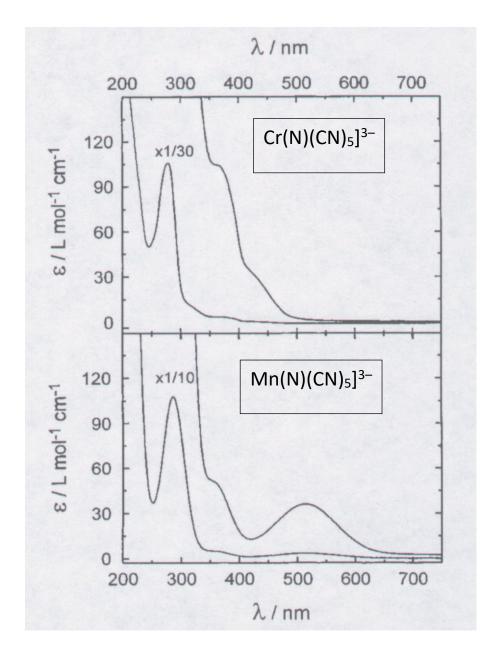
- 1a. Construct an MO diagram for $C_{4\nu}$ [L₅MO]ⁿ⁺ (L is an uncharged ligand, for example, H₂O or NH₃) using the following orbitals: five metal 3d orbitals, one set of five ligand σ orbitals, and the oxo σ + 2p π orbitals.
- b. Predict the ground state electronic configuration and the metal-oxo bond order for each of the following:

[L ₅ VO] ²⁺	VIV	<i>d</i> 1
[L₅CrO] ³ +	Cr ^v	d1
[L ₅ CrO] ²⁺	Cr ^{IV}	d ²
[L₅MnO] ³⁺	Mn [∨]	d ²
[L ₅ MnO] ²⁺	Mn ^{IV}	d ³
[L₅FeO] ²⁺	Fe ^{IV}	<i>d</i> ⁴

- c. Do you think that $[L_5CoO]^{2+}$ is a stable complex? Why or why not?
- 2. Electronic Structure and Spectra of Metal Oxo and Nitrido Complexes

The $d\pi$ -orbital splitting for a tetragonal oxo- or nitrido-metal complex is shown above.

The following states arise from the d^1 and d^2 configurations in this scheme:


```
d^1:
        <sup>2</sup>E[(xz,yz)<sup>1</sup>]
                                                                   E = \Delta \pi
        ^{2}B_{2}[(xy)^{1}]
                                                                   E = 0
d<sup>2</sup>:
        ^{3}A_{2}[(xz,yz)^{2}]
                                                                  \mathsf{E} = 2\Delta_{\pi} + \mathsf{A} - \mathsf{5}\mathsf{B}
        {}^{1}A_{1}[(xz,yz)^{2}]
                                                                  E = 2\Delta_{\pi} + A + 7B + 4C
                                                                  \mathsf{E} = 2\Delta_{\pi} + \mathsf{A} + \mathsf{B} + 2\mathsf{C}
        {}^{1}B_{1}[(xz,yz)^{2}]
        ^{1}B_{2}[(xz,yz)^{2}]
                                                                  E = 2\Delta_{\pi} + A + B + 2C
        <sup>1</sup>E[(xy)<sup>1</sup>(xz,yz)<sup>1</sup>]
                                                                  \mathsf{E} = \Delta_{\pi} + \mathsf{A} + \mathsf{B} + 2\mathsf{C}
        {}^{3}E[(xy)^{1}(xz,yz)^{1}]
                                                                  E = \Delta_{\pi} + A - 5B
        {}^{1}A_{1}[(xy)^{2}]
                                                                  E = A + 4B + 3C
```

The absorption spectra of $Cr^{V}(N)(CN)_{5}^{3-}$ and $Mn^{V}(N)(CN)_{5}^{3-}$ are shown below.

In $Cr^{V}(N)(CN)_{5}^{3-}$, the lowest energy spin-allowed absorption band is at 23,300 cm⁻¹.

In $Mn^{V}(N)(CN)_{5}^{3-}$, the lowest energy spin-allowed absorption band is at 19,400 cm⁻¹.

- a. Provide an assignment for the lowest energy spin-allowed absorption band in each complex.
- b. Use the foregoing orbital splitting diagram and the state energies to determine the values of Δ_{π} in the Cr and Mn complexes. Assume that $B = 500 \text{ cm}^{-1}$ and C/B = 4.

